correction typos

This commit is contained in:
Timothee Rocquet 2024-01-08 19:14:24 +01:00
parent f0e1400766
commit 1abffe9854
1 changed files with 3 additions and 3 deletions

View File

@ -31,7 +31,7 @@ Une \emph{stratégie} pour Félicie est une manière de choisir quelle prédicti
\q Si $\mathcal{P}=[0,1]$ (c'est-à-dire qu'elle n'a aucune information a priori sur la valeur de $p$), quel est le gain minimal espéré pour les stratégie a), b), c) décrites dans la question \textbf{1.} ? \q Si $\mathcal{P}=[0,1]$ (c'est-à-dire qu'elle n'a aucune information a priori sur la valeur de $p$), quel est le gain minimal espéré pour les stratégie a), b), c) décrites dans la question \textbf{1.} ?
\q Quelle(s) stratégie(s) $\mathcal{S}$ donne le plus grand gain minimal espéré $\mathcal{G}_{\mathcal{S},\mathcal{P}}$ (et quel est-il) si : \q Trouver une stratégie $\mathcal{S}$ qui donne le plus grand gain minimal espéré $\mathcal{G}_{\mathcal{S},\mathcal{P}}$ parmi toutes les stratégies possibles (et le calculer) si :
\begin{enumerate} \begin{enumerate}
\item $\mathcal{P}=[0,\frac{1}{3}]$ ? \item $\mathcal{P}=[0,\frac{1}{3}]$ ?
\item $\mathcal{P}=[0,1]$ ? \item $\mathcal{P}=[0,1]$ ?
@ -42,7 +42,7 @@ Une \emph{stratégie} pour Félicie est une manière de choisir quelle prédicti
A partir de maintenant, Félix possède deux pièces, d'apparences indistinguables, qui tombent sur pile avec des probabilités respectives $p_1$ et $p_2$. Avant la partie, il choisit au hasard une des deux pièces : il prend la pièce $1$ avec probabilité $q$ (donc la pièce $2$ avec probabilité $1-q$) puis tire $n+1$ fois la pièce choisie, comme avant. On suppose que Félicie connaît les probabilités $p_1$, $p_2$ et $q$ (donc les choix de prédictions qu'elle fait peuvent dépendre de $p_1$, $p_2$ et $q$). A partir de maintenant, Félix possède deux pièces, d'apparences indistinguables, qui tombent sur pile avec des probabilités respectives $p_1$ et $p_2$. Avant la partie, il choisit au hasard une des deux pièces : il prend la pièce $1$ avec probabilité $q$ (donc la pièce $2$ avec probabilité $1-q$) puis tire $n+1$ fois la pièce choisie, comme avant. On suppose que Félicie connaît les probabilités $p_1$, $p_2$ et $q$ (donc les choix de prédictions qu'elle fait peuvent dépendre de $p_1$, $p_2$ et $q$).
\q Quelle est l'espérance du gain de Félicie pour les stratégie a), b), c) décrites dans la question~\textbf{1.} ? Quelle stratégie donne la plus grande espérance du gain et que vaut-elle ? \q Quelle est l'espérance du gain de Félicie pour les stratégie a), b), c) décrites dans la question~\textbf{1.} ? Parmi toutes les stratégies possibles, en trouver une pour laquelle l'espérance du gain est la plus grande possible, et la calculer.
\medskip \medskip
@ -60,4 +60,4 @@ Désormais, Félix possède toujours deux pièces mais change de pièce en cours
\item Après chaque lancer, Félicie peut décider de continuer ou d'annoncer \og{} la pièce a déjà changé \fg{}, auquel cas le jeu s'arrête. Si elle a raison, elle gagne $n-(m-K)$ points, où $m$ est le numéro du lancer après lequel l'annonce a été faite ($0$ pour le premier, $N$ pour le dernier). Autrement dit, si elle fait l'annonce après le lancer $m$, soit $m<K$ et elle ne gagne pas de point, soit $m\geq K$ et elle gagne $n$ points mais perd un point par tour de retard de son annonce. Quelle(s) stratégie(s) lui permet(tent) de maximiser l'espérance de son gain et que vaut alors ce gain en moyenne ? \item Après chaque lancer, Félicie peut décider de continuer ou d'annoncer \og{} la pièce a déjà changé \fg{}, auquel cas le jeu s'arrête. Si elle a raison, elle gagne $n-(m-K)$ points, où $m$ est le numéro du lancer après lequel l'annonce a été faite ($0$ pour le premier, $N$ pour le dernier). Autrement dit, si elle fait l'annonce après le lancer $m$, soit $m<K$ et elle ne gagne pas de point, soit $m\geq K$ et elle gagne $n$ points mais perd un point par tour de retard de son annonce. Quelle(s) stratégie(s) lui permet(tent) de maximiser l'espérance de son gain et que vaut alors ce gain en moyenne ?
\end{enumerate} \end{enumerate}
\q Proposer et étudier d'autres pistes de recherche. On pourra par exemple étudier des cas avec plus de pièces, remplacer les pièces par des dés... \q Proposer et étudier d'autres pistes de recherche.