ajout des prenoms dans pieces truquees

This commit is contained in:
Timothee Rocquet 2023-12-14 19:32:23 +01:00
parent d071e9bf18
commit 8b0d746be4
1 changed files with 21 additions and 21 deletions

View File

@ -1,61 +1,61 @@
\section{Pièces truquées}
A et B jouent à un jeu de pile ou face. A possède une pièce truquée qui tombe sur pile avec probabilité $p\in[0,1]$. Le jeu se déroule de la manière suivante : A lance une première fois la pièce, puis B essaye de prédire le résultat du lancer suivant, A lance à nouveau la pièce, B fait une prédiction et ainsi de suite. Si on numérote les lancers de $0$ à $n$, A lance donc $n+1$ fois la pièce (on suppose les lancers indépendants) et B fait $n$ prédictions pour les lancers $1$, $2$, ..., $n$.
Félix et Félicie jouent à un jeu de pile ou face. Félix possède une pièce truquée qui tombe sur pile avec probabilité $p\in[0,1]$. Le jeu se déroule de la manière suivante : Félix lance une première fois la pièce, puis Félicie essaye de prédire le résultat du lancer suivant, Félix lance à nouveau la pièce, Félicie fait une prédiction et ainsi de suite. Si on numérote les lancers de $0$ à $n$, Félix lance donc $n+1$ fois la pièce (on suppose les lancers indépendants) et Félicie fait $n$ prédictions pour les lancers $1$, $2$, ..., $n$.
Un exemple de partie, pour $n=2$, est :
\small \begin{itemize}[itemsep=0pt]
\item A tire pile
\item B prédit face
\item A tire face
\item B prédit pile
\item A tire face
\item Félix tire pile
\item Félicie prédit face
\item Félix tire face
\item Félicie prédit pile
\item Félix tire face
\end{itemize} \normalsize
Dans ce cas, B a fait une première prédiction juste et une deuxième prédiction fausse.
Dans ce cas, Félicie a fait une première prédiction juste et une deuxième prédiction fausse.
\q B gagne un point par prédiction juste. Quelle est l'espérance de son gain si sa prédiction est :
\q Félicie gagne un point par prédiction juste. Quelle est l'espérance de son gain si sa prédiction est :
\begin{enumerate}
\item toujours pile ?
\item le résultat du lancer précédent ?
\item pile si le nombre de pile déjà tirés est pair, face sinon ?
\end{enumerate}
\q Le gain de B si sa prédiction est juste est désormais variable. Dans les cas a) et b) de la question~\textbf{1.}, quelle est l'espérance de son gain si :
\q Le gain de Félicie si sa prédiction est juste est désormais variable. Dans les cas a) et b) de la question~\textbf{1.}, quelle est l'espérance de son gain si :
\begin{enumerate}
\item il gagne $m$ points pour une prédiction juste au lancer $m$ ?
\item il gagne autant de points qu'il a fait de prédiction juste jusqu'à présent (1 point pour la première prédiction juste, 2 pour la deuxième...) ?
\item elle gagne $m$ points pour une prédiction juste au lancer $m$ ?
\item elle gagne autant de points qu'elle a fait de prédiction juste jusqu'à présent (1 point pour la première prédiction juste, 2 pour la deuxième...) ?
\end{enumerate}
Maintenant B veut maximiser ses chances d'obtenir un bon score. Il ne connaît pas la valeur de $p$ mais il sait que $p\in \mathcal{P}$$\mathcal{P}$ est une partie de $[0,1]$.
Maintenant Félicie veut maximiser ses chances d'obtenir un bon score. Elle ne connaît pas la valeur de $p$ mais elle sait que $p\in \mathcal{P}$$\mathcal{P}$ est une partie de $[0,1]$.
Une \emph{stratégie} pour B est une manière de choisir quelle prédiction il va faire avant le lancer $m$ en fonction des résultats des lancers $0,1,2,...,m-1$. La question \textbf{1.} donne donc trois exemples de stratégies. Si on appel $G_\mathcal{S}$ le gain (aléatoire) obtenu pour la stratégie $\mathcal{S}$, le \emph{gain minimal espéré} pour la stratégie $\mathcal{S}$ est $\mathcal{G}_{\mathcal{S},P}=\min_{p\in P} \mathbb{E}_p(G_\mathcal{S})$$\mathbb{E}_p$ désigne l'espérance dans le cas où la pièce tombe sur pile avec probabilité $p$. Autrement dit, $\mathcal{G}_\mathcal{S}$ est l'espérance du gain apporté par la stratégie $\mathcal{S}$ pour la pire des valeurs de $p\in \mathcal{P}$, ie. pour celle où ce gain espéré est minimal.
Une \emph{stratégie} pour Félicie est une manière de choisir quelle prédiction elle va faire avant le lancer $m$ en fonction des résultats des lancers $0,1,2,...,m-1$. La question \textbf{1.} donne donc trois exemples de stratégies. Si on appel $G_\mathcal{S}$ le gain (aléatoire) obtenu pour la stratégie $\mathcal{S}$, le \emph{gain minimal espéré} pour la stratégie $\mathcal{S}$ est $\mathcal{G}_{\mathcal{S},\mathcal{P}}=\min_{p\in \mathcal{P}} \mathbb{E}_p(G_\mathcal{S})$$\mathbb{E}_p$ désigne l'espérance dans le cas où la pièce tombe sur pile avec probabilité $p$. Autrement dit, $\mathcal{G}_\mathcal{S}$ est l'espérance du gain apporté par la stratégie $\mathcal{S}$ pour la pire des valeurs de $p\in \mathcal{P}$, ie. pour celle où ce gain espéré est minimal.
\q Si $\mathcal{P}=[0,1]$ (ie. on n'a aucune information a priori sur la valeur de $p$), quel est le gain minimal espéré pour les stratégie a), b), c) décrites dans la question \textbf{1.} ?
\q Quelle stratégie $\mathcal{S}$ donne le plus grand gain minimal espéré $\mathcal{G}_{\mathcal{S},P}$ et quel est-il si :
\q Quelle stratégie $\mathcal{S}$ donne le plus grand gain minimal espéré $\mathcal{G}_{\mathcal{S},\mathcal{P}}$ et quel est-il si :
\begin{enumerate}
\item $\mathcal{P}=[0,\frac{1}{2}]$ ?
\item $\mathcal{P}=[0,1]$ ?
\item $\mathcal{P}=[0,\frac{1}{4}]\cup [\frac{3}{4},1]$ ?
\end{enumerate}
A partir de maintenant, le joueur A possède deux pièces, d'apparences indistinguables, qui tombent sur pile avec des probabilités respectives $p_1$ et $p_2$. Avant la partie, il choisit au hasard une des deux pièces : il prend la pièce $1$ avec probabilité $q$ (donc la pièce $2$ avec probabilité $1-q$) puis tire $n+1$ fois la pièce choisie, comme avant. On suppose que le joueur B connaît les probabilités $p_1$, $p_2$, $q$.
A partir de maintenant, Félix possède deux pièces, d'apparences indistinguables, qui tombent sur pile avec des probabilités respectives $p_1$ et $p_2$. Avant la partie, il choisit au hasard une des deux pièces : il prend la pièce $1$ avec probabilité $q$ (donc la pièce $2$ avec probabilité $1-q$) puis tire $n+1$ fois la pièce choisie, comme avant. On suppose que Félicie connaît les probabilités $p_1$, $p_2$, $q$.
\q Quel est l'espérance du gain de B pour les stratégie a), b), c) décrites dans la question \textbf{1.} ? Quelle est la meilleure stratégie possible (ie. celle maximisant l'espérance du gain) et que vaut alors le gain en moyenne ?
\q Quel est l'espérance du gain de Félicie pour les stratégie a), b), c) décrites dans la question~\textbf{1.} ? Quelle est la meilleure stratégie possible (ie. celle maximisant l'espérance du gain) et que vaut alors le gain en moyenne ?
\medskip
B n'essaye plus de deviner les lancers mais plutôt quelle pièce a été choisie. A lance une première fois la pièce puis, après chaque lancer, B peut choisir de déclarer quelle pièce a été choisie selon lui, auquel cas le jeu s'arrête, ou de demander un lancer supplémentaire, dans une limite de $n$ lancers demandés maximum. B gagne $m$ point si sa déclaration est correcte (et aucun point s'il se trompe) et perd 1 point par lancer supplémentaire demandé.
Félicie n'essaye plus de deviner les résultats des lancers mais plutôt quelle pièce a été choisie. Félix lance une première fois la pièce puis, après chaque lancer, Félicie peut choisir de déclarer quelle pièce a été choisie selon elle, auquel cas le jeu s'arrête, ou de demander un lancer supplémentaire, dans une limite de $n$ lancers demandés maximum. Félicie gagne $m$ points si sa déclaration est correcte (et aucun point si elle se trompe) et perd 1 point par lancer supplémentaire demandé.
\q Quelle est la stratégie qui maximise l'espérance du gain obtenu et que vaut alors ce gain en moyenne ? Que se passe-t-il quand $n\to\infty$ (ie. on ne fixe plus de limite au nombre de lancers demandés) ?
\medskip
Désormais, A possède toujours deux pièces mais change de pièce en cours de route. Avant la partie, il choisit uniformément au hasard un nombre $K$ entre $1$ et $n$ (inclus). Il tire la pièce~$1$ pour les lancers $0, ..., K-1$ et la pièce~$2$ pour les lancers $K, ..., n$. B connaît toujours les probabilités $p_1$, $p_2$.
Désormais, Félix possède toujours deux pièces mais change de pièce en cours de route. Avant la partie, il choisit uniformément au hasard un nombre $K$ entre $1$ et $n$ (inclus). Il tire la pièce~$1$ pour les lancers $0, ..., K-1$ et la pièce~$2$ pour les lancers $K, ..., n$. Félicie connaît toujours les probabilités $p_1$, $p_2$.
\q B doit deviner quel $K$ a été choisi par A.
\q Félicie doit deviner quel $K$ a été choisi par Félix.
\begin{enumerate}
\item Il annonce sa prédiction après les $n+1$ lancers. Quelle stratégie lui permet de maximiser la probabilité d'avoir raison et quelle est alors cette probabilité ?
\item Après chaque lancer, $B$ peut décider de continuer ou d'annoncer \og{} la pièce a déjà changé \fg{}, auquel cas le jeu s'arrête. S'il a raison, il gagne $n-(m-K)$ points, où $m$ est le numéro du lancer après lequel l'annonce a été faite ($0$ pour le premier, $N$ pour le dernier). Autrement dit, si il fait l'annonce après le lancer $m$, soit $m<K$ et il ne gagne pas de point, soit $m\geq K$ et il gagne $n$ points mais perd un point par tour de retard de son annonce. Quelle stratégie lui permet de maximiser l'espérance de son gain et que vaut alors ce gain en moyenne ?
\item Elle annonce sa prédiction après les $n+1$ lancers. Quelle stratégie lui permet de maximiser la probabilité d'avoir raison et quelle est alors cette probabilité ?
\item Après chaque lancer, Félicie peut décider de continuer ou d'annoncer \og{} la pièce a déjà changé \fg{}, auquel cas le jeu s'arrête. Si elle a raison, elle gagne $n-(m-K)$ points, où $m$ est le numéro du lancer après lequel l'annonce a été faite ($0$ pour le premier, $N$ pour le dernier). Autrement dit, si elle fait l'annonce après le lancer $m$, soit $m<K$ et elle ne gagne pas de point, soit $m\geq K$ et elle gagne $n$ points mais perd un point par tour de retard de son annonce. Quelle stratégie lui permet de maximiser l'espérance de son gain et que vaut alors ce gain en moyenne ?
\end{enumerate}
\q Proposer et étudier d'autres pistes de recherche. On pourra par exemple changer les lois de probabilité du problème, considérer des lancers non indépendants, étudier des cas avec plus de pièces, remplacer les pièces par des dés...