From c8616659388e7298fa1fedf69a1763ca789946c4 Mon Sep 17 00:00:00 2001 From: Timothee Rocquet Date: Mon, 8 Jan 2024 23:25:08 +0100 Subject: [PATCH] correction typos --- src/piece_truquee.tex | 28 ++++++++++++++-------------- 1 file changed, 14 insertions(+), 14 deletions(-) diff --git a/src/piece_truquee.tex b/src/piece_truquee.tex index 2970c48..07894a4 100644 --- a/src/piece_truquee.tex +++ b/src/piece_truquee.tex @@ -1,33 +1,33 @@ \section{Pièces truquées} -Soit $n\geq 1$ un entier. Félix et Félicie jouent à un jeu de pile ou face. Félix possède une pièce truquée qui tombe sur pile avec probabilité $p\in[0,1]$. Le jeu se déroule de la manière suivante : Félix lance une première fois la pièce, puis Félicie essaye de prédire le résultat du lancer suivant, Félix lance à nouveau la pièce, Félicie fait une prédiction et ainsi de suite. Si on numérote les lancers de $0$ à $n$, Félix lance donc $n+1$ fois la pièce (on suppose les lancers indépendants) et Félicie fait $n$ prédictions pour les lancers $1$, $2$, ..., $n$. Les $n+1$ lancers et les $n$ prédictions constituent une \textbf{partie}. +Soit $n\geq 1$ un entier. Félix et Clara jouent à un jeu de pile ou face. Félix possède une pièce truquée qui tombe sur pile avec probabilité $p\in[0,1]$. Le jeu se déroule de la manière suivante : Félix lance une première fois la pièce, puis Clara essaye de prédire le résultat du lancer suivant, Félix lance à nouveau la pièce, Clara fait une prédiction et ainsi de suite. Si on numérote les lancers de $0$ à $n$, Félix lance donc $n+1$ fois la pièce (on suppose les lancers indépendants) et Clara fait $n$ prédictions pour les lancers $1$, $2$, ..., $n$. Les $n+1$ lancers et les $n$ prédictions constituent une \textbf{partie}. Un exemple de partie, pour $n=2$, est : \small \begin{itemize}[itemsep=0pt] \item Félix tire pile - \item Félicie prédit face + \item Clara prédit face \item Félix tire face - \item Félicie prédit pile + \item Clara prédit pile \item Félix tire face \end{itemize} \normalsize -Dans ce cas, Félicie a fait une première prédiction juste et une deuxième prédiction fausse. +Dans ce cas, Clara a fait une première prédiction juste et une deuxième prédiction fausse. -\q Félicie gagne un point par prédiction juste. Son nombre total de points à la fin de la partie est appelé son \emph{gain}. Quelle est l'espérance de son gain si sa prédiction est : +\q Clara gagne un point par prédiction juste. Son nombre total de points à la fin de la partie est appelé son \emph{gain}. Quelle est l'espérance de son gain si sa prédiction est : \begin{enumerate} \item toujours pile ? \item le résultat du lancer précédent ? \item pile si le nombre de piles déjà tirés est pair, face sinon ? \end{enumerate} -%\q Le gain de Félicie si sa prédiction est juste est désormais variable. Dans les cas a) et b) de la question~\textbf{1.}, quelle est l'espérance de son gain si : +%\q Le gain de Clara si sa prédiction est juste est désormais variable. Dans les cas a) et b) de la question~\textbf{1.}, quelle est l'espérance de son gain si : %\begin{enumerate} % \item elle gagne $m$ points pour une prédiction juste au lancer $m$ ? % \item elle gagne autant de points qu'elle a fait de prédiction juste jusqu'à présent (1 point pour la première prédiction juste, 2 pour la deuxième...) ? %\end{enumerate} -Maintenant Félicie veut maximiser ses chances d'obtenir un bon score. Elle ne connaît pas la valeur de $p$ mais elle sait que $p\in \mathcal{P}$ où $\mathcal{P}$ est un sous-ensemble de $[0,1]$. +Maintenant Clara veut maximiser ses chances d'obtenir un bon score. Elle ne connaît pas la valeur de $p$ mais elle sait que $p\in \mathcal{P}$ où $\mathcal{P}$ est un sous-ensemble de $[0,1]$. -Une \emph{stratégie} pour Félicie est une manière de choisir quelle prédiction elle va faire avant le lancer $m$ en fonction des résultats des lancers $0,1,2,...,m-1$. La question \textbf{1.} donne trois exemples de stratégies. Soit $G_{\mathcal{S},p}$ le gain (aléatoire) obtenu pour la stratégie $\mathcal{S}$, avec $p$ la probabilité que la pièce tombe sur pile. On définit le \emph{gain minimal espéré} pour la stratégie $\mathcal{S}$ comme $\mathcal{G}_{\mathcal{S},\mathcal{P}}=\min_{p\in \mathcal{P}} \mathbb{E}(G_{\mathcal{S},p})$. Autrement dit, $\mathcal{G}_{\mathcal{S},\mathcal{P}}$ est l'espérance du gain apporté par la stratégie $\mathcal{S}$ pour la pire des valeurs de $p\in \mathcal{P}$, c'est-à-dire pour celle où ce gain espéré est le plus bas. +Une \emph{stratégie} pour Clara est une manière de choisir quelle prédiction elle va faire avant le lancer $m$ en fonction des résultats des lancers $0,1,2,...,m-1$. La question \textbf{1.} donne trois exemples de stratégies. Soit $G_{\mathcal{S},p}$ le gain (aléatoire) obtenu pour la stratégie $\mathcal{S}$, avec $p$ la probabilité que la pièce tombe sur pile. On définit le \emph{gain minimal espéré} pour la stratégie $\mathcal{S}$ comme $\mathcal{G}_{\mathcal{S},\mathcal{P}}=\min_{p\in \mathcal{P}} \mathbb{E}(G_{\mathcal{S},p})$. Autrement dit, $\mathcal{G}_{\mathcal{S},\mathcal{P}}$ est l'espérance du gain apporté par la stratégie $\mathcal{S}$ pour la pire des valeurs de $p\in \mathcal{P}$, c'est-à-dire pour celle où ce gain espéré est le plus bas. \q Si $\mathcal{P}=[0,1]$ (c'est-à-dire qu'elle n'a aucune information a priori sur la valeur de $p$), quel est le gain minimal espéré pour les stratégie a), b), c) décrites dans la question \textbf{1.} ? @@ -40,24 +40,24 @@ Une \emph{stratégie} pour Félicie est une manière de choisir quelle prédicti \medskip -A partir de maintenant, Félix possède deux pièces, d'apparences indistinguables, qui tombent sur pile avec des probabilités respectives $p_1$ et $p_2$. Avant la partie, il choisit au hasard une des deux pièces : il prend la pièce $1$ avec probabilité $q$ (donc la pièce $2$ avec probabilité $1-q$) puis tire $n+1$ fois la pièce choisie, comme avant. On suppose que Félicie connaît les probabilités $p_1$, $p_2$ et $q$ (donc les choix de prédictions qu'elle fait peuvent dépendre de $p_1$, $p_2$ et $q$). +A partir de maintenant, Félix possède deux pièces, d'apparences indistinguables, qui tombent sur pile avec des probabilités respectives $p_1$ et $p_2$. Avant la partie, il choisit au hasard une des deux pièces : il prend la pièce $1$ avec probabilité $q$ (donc la pièce $2$ avec probabilité $1-q$) puis tire $n+1$ fois la pièce choisie, comme avant. On suppose que Clara connaît les probabilités $p_1$, $p_2$ et $q$ (donc les choix de prédictions qu'elle fait peuvent dépendre de $p_1$, $p_2$ et $q$). -\q Quelle est l'espérance du gain de Félicie pour les stratégie a), b), c) décrites dans la question~\textbf{1.} ? Parmi toutes les stratégies possibles, en trouver une pour laquelle l'espérance du gain est la plus grande possible, et la calculer. +\q Quelle est l'espérance du gain de Clara pour les stratégie a), b), c) décrites dans la question~\textbf{1.} ? Parmi toutes les stratégies possibles, en trouver une pour laquelle l'espérance du gain est la plus grande possible, et la calculer. \medskip -Félicie n'essaye plus de deviner les résultats des lancers mais plutôt quelle pièce a été choisie. Félix lance une première fois la pièce puis, après chaque lancer, Félicie peut choisir de déclarer quelle pièce a été choisie selon elle, auquel cas le jeu s'arrête, ou de demander un lancer supplémentaire, dans une limite de $n$ lancers demandés maximum. Félicie gagne $\alpha$ points si sa déclaration est correcte (et aucun point si elle se trompe) et perd 1 point par lancer supplémentaire demandé. +Clara n'essaye plus de deviner les résultats des lancers mais plutôt quelle pièce a été choisie. Félix lance une première fois la pièce puis, après chaque lancer, Clara peut choisir de déclarer quelle pièce a été choisie selon elle, auquel cas le jeu s'arrête, ou de demander un lancer supplémentaire, dans une limite de $n$ lancers demandés maximum. Clara gagne $\alpha$ points si sa déclaration est correcte (et aucun point si elle se trompe) et perd 1 point par lancer supplémentaire demandé. \q Quelle stratégie maximise l'espérance du gain obtenu et que vaut alors ce gain en moyenne ? Que se passe-t-il quand $n\to\infty$ (c'est-à-dire qu'on ne fixe plus de limite au nombre de lancers demandés) ? \medskip -Désormais, Félix possède toujours deux pièces mais change de pièce en cours de route. Avant la partie, il choisit uniformément au hasard un nombre $K$ entre $1$ et $n$ (inclus). Il tire la pièce~$1$ pour les lancers $0, ..., K-1$ et la pièce~$2$ pour les lancers $K, ..., n$. Félicie connaît toujours les probabilités $p_1$, $p_2$. +Désormais, Félix possède toujours deux pièces mais change de pièce en cours de route. Avant la partie, il choisit uniformément au hasard un nombre $K$ entre $1$ et $n$ (inclus). Il tire la pièce~$1$ pour les lancers $0, ..., K-1$ et la pièce~$2$ pour les lancers $K, ..., n$. Clara connaît toujours les probabilités $p_1$, $p_2$. -\q Félicie doit deviner quel $K$ a été choisi par Félix. +\q Clara doit deviner quel $K$ a été choisi par Félix. \begin{enumerate} \item Elle annonce sa prédiction après les $n+1$ lancers. Quelle(s) stratégie(s) lui permet(tent) de maximiser la probabilité d'avoir raison et quelle est alors cette probabilité ? - \item Après chaque lancer, Félicie peut décider de continuer ou d'annoncer \og{} la pièce a déjà changé \fg{}, auquel cas le jeu s'arrête. Si elle a raison, elle gagne $n-(m-K)$ points, où $m$ est le numéro du lancer après lequel l'annonce a été faite ($0$ pour le premier, $N$ pour le dernier). Autrement dit, si elle fait l'annonce après le lancer $m$, soit $m