\section{Pièces truquées} Félix et Félicie jouent à un jeu de pile ou face. Félix possède une pièce truquée qui tombe sur pile avec probabilité $p\in[0,1]$. Le jeu se déroule de la manière suivante : Félix lance une première fois la pièce, puis Félicie essaye de prédire le résultat du lancer suivant, Félix lance à nouveau la pièce, Félicie fait une prédiction et ainsi de suite. Si on numérote les lancers de $0$ à $n$, Félix lance donc $n+1$ fois la pièce (on suppose les lancers indépendants) et Félicie fait $n$ prédictions pour les lancers $1$, $2$, ..., $n$. Un exemple de partie, pour $n=2$, est : \small \begin{itemize}[itemsep=0pt] \item Félix tire pile \item Félicie prédit face \item Félix tire face \item Félicie prédit pile \item Félix tire face \end{itemize} \normalsize Dans ce cas, Félicie a fait une première prédiction juste et une deuxième prédiction fausse. \q Félicie gagne un point par prédiction juste. Quelle est l'espérance de son gain si sa prédiction est : \begin{enumerate} \item toujours pile ? \item le résultat du lancer précédent ? \item pile si le nombre de pile déjà tirés est pair, face sinon ? \end{enumerate} %\q Le gain de Félicie si sa prédiction est juste est désormais variable. Dans les cas a) et b) de la question~\textbf{1.}, quelle est l'espérance de son gain si : %\begin{enumerate} % \item elle gagne $m$ points pour une prédiction juste au lancer $m$ ? % \item elle gagne autant de points qu'elle a fait de prédiction juste jusqu'à présent (1 point pour la première prédiction juste, 2 pour la deuxième...) ? %\end{enumerate} Maintenant Félicie veut maximiser ses chances d'obtenir un bon score. Elle ne connaît pas la valeur de $p$ mais elle sait que $p\in \mathcal{P}$ où $\mathcal{P}$ est une partie de $[0,1]$. Une \emph{stratégie} pour Félicie est une manière de choisir quelle prédiction elle va faire avant le lancer $m$ en fonction des résultats des lancers $0,1,2,...,m-1$. La question \textbf{1.} donne donc trois exemples de stratégies. Si on appel $G_\mathcal{S}$ le gain (aléatoire) obtenu pour la stratégie $\mathcal{S}$, le \emph{gain minimal espéré} pour la stratégie $\mathcal{S}$ est $\mathcal{G}_{\mathcal{S},\mathcal{P}}=\min_{p\in \mathcal{P}} \mathbb{E}_p(G_\mathcal{S})$ où $\mathbb{E}_p$ désigne l'espérance dans le cas où la pièce tombe sur pile avec probabilité $p$. Autrement dit, $\mathcal{G}_{\mathcal{S},\mathcal{P}}$ est l'espérance du gain apporté par la stratégie $\mathcal{S}$ pour la pire des valeurs de $p\in \mathcal{P}$, c'est-à-dire pour celle où ce gain espéré est minimal. \q Si $\mathcal{P}=[0,1]$ (c'est-à-dire qu'on n'a aucune information a priori sur la valeur de $p$), quel est le gain minimal espéré pour les stratégie a), b), c) décrites dans la question \textbf{1.} ? \q Quelle stratégie $\mathcal{S}$ donne le plus grand gain minimal espéré $\mathcal{G}_{\mathcal{S},\mathcal{P}}$ et quel est-il si : \begin{enumerate} \item $\mathcal{P}=[0,\frac{1}{3}]$ ? \item $\mathcal{P}=[0,1]$ ? \item $\mathcal{P}=[0,\frac{1}{4}]\cup [\frac{3}{4},1]$ ? \end{enumerate} A partir de maintenant, Félix possède deux pièces, d'apparences indistinguables, qui tombent sur pile avec des probabilités respectives $p_1$ et $p_2$. Avant la partie, il choisit au hasard une des deux pièces : il prend la pièce $1$ avec probabilité $q$ (donc la pièce $2$ avec probabilité $1-q$) puis tire $n+1$ fois la pièce choisie, comme avant. On suppose que Félicie connaît les probabilités $p_1$, $p_2$ et $q$. \q Quelle est l'espérance du gain de Félicie pour les stratégie a), b), c) décrites dans la question~\textbf{1.} ? Quelle stratégie donne la plus grande espérance du gain et que vaut-elle ? \medskip Félicie n'essaye plus de deviner les résultats des lancers mais plutôt quelle pièce a été choisie. Félix lance une première fois la pièce puis, après chaque lancer, Félicie peut choisir de déclarer quelle pièce a été choisie selon elle, auquel cas le jeu s'arrête, ou de demander un lancer supplémentaire, dans une limite de $n$ lancers demandés maximum. Félicie gagne $m$ points si sa déclaration est correcte (et aucun point si elle se trompe) et perd 1 point par lancer supplémentaire demandé. \q Quelle stratégie maximise l'espérance du gain obtenu et que vaut alors ce gain en moyenne ? Que se passe-t-il quand $n\to\infty$ (ie. on ne fixe plus de limite au nombre de lancers demandés) ? \medskip Désormais, Félix possède toujours deux pièces mais change de pièce en cours de route. Avant la partie, il choisit uniformément au hasard un nombre $K$ entre $1$ et $n$ (inclus). Il tire la pièce~$1$ pour les lancers $0, ..., K-1$ et la pièce~$2$ pour les lancers $K, ..., n$. Félicie connaît toujours les probabilités $p_1$, $p_2$. \q Félicie doit deviner quel $K$ a été choisi par Félix. \begin{enumerate} \item Elle annonce sa prédiction après les $n+1$ lancers. Quelle stratégie lui permet de maximiser la probabilité d'avoir raison et quelle est alors cette probabilité ? \item Après chaque lancer, Félicie peut décider de continuer ou d'annoncer \og{} la pièce a déjà changé \fg{}, auquel cas le jeu s'arrête. Si elle a raison, elle gagne $n-(m-K)$ points, où $m$ est le numéro du lancer après lequel l'annonce a été faite ($0$ pour le premier, $N$ pour le dernier). Autrement dit, si elle fait l'annonce après le lancer $m$, soit $m