brioche : chgmt de définition du contour, correction typos

This commit is contained in:
unknown 2024-01-08 14:17:40 +01:00
parent 3177fe9600
commit d85204cbb9
1 changed files with 8 additions and 8 deletions

View File

@ -38,7 +38,7 @@ Perrine aimerait notamment fabriquer les formes de cookie suivantes :
\item un disque de rayon $R$;
\item un rectangle plein de côtés de longueurs $a$ et $b$;
\item un triangle plein de côtés de longueurs $a$, $b$ et $c$;
\item un anneau de rayon intérieur $R_1$ et de rayon extérieur $R_2$ (avec $R_2>R_1$), les deux cercles étant inclus dans le cookie.
\item un anneau de rayon intérieur $R_1$ et de rayon extérieur $R_2$ (avec $R_2>R_1$), les deux cercles qui constituent le bord de l'anneau étant inclus dans le cookie.
\end{enumerate}
\begin{center}
@ -63,7 +63,7 @@ La \textbf{quantité de pâte} utilisée pour faire un cookie est la somme des l
\medskip
La précision de l'outil de Perrine étant limitée, la quantité de pâte qu'elle dépose en $P$ ne peut pas être trop petite. Pour un $r \geq 0$ fixé, on dit que l'outil de Perrine est de précision $r$ lorsque $R(P) \geq r$ pour tout point $P$ placé par Perrine. On appelle $r$-\textbf{cookie du plan}, ou plus simplement $r$-cookie, un cookie que Perrine peut réaliser avec un outil de précision $r$. Les réponses aux questions suivantes vont donc dépendre de $r$.
La précision de l'outil de Perrine étant limitée, la quantité de pâte qu'elle dépose en $P$ ne peut pas être trop petite. Pour un $r \geq 0$ fixé, on dit que l'outil de Perrine est de précision~$r$ lorsque $R(P) \geq r$ pour tout point $P$ placé par Perrine. On appelle $r$-\textbf{cookie du plan}, ou plus simplement $r$-cookie, un cookie que Perrine peut réaliser avec un outil de précision $r$. Les réponses aux questions suivantes vont donc dépendre de $r$.
En particulier, les $0$-cookies sont exactement les cookies, et tout $r$-cookie est un cookie.
@ -84,17 +84,17 @@ En particulier, les $0$-cookies sont exactement les cookies, et tout $r$-cookie
\medskip
Perrine s'intéresse maintenant à la forme du bord de ses $r$-cookies. Soit $x : [0,1] \to \R$ et $y : [0,1] \to \R$ deux fonctions continues telles que :
Perrine s'intéresse maintenant à la forme du bord de ses $r$-cookies. Pour cela on suppose qu'elle dispose de deux fonctions continues $x : \R \to \R$ et~$y : \R \to \R$ qui vérifient les propriétés suivantes :
\begin{itemize}
\item $x(0) = x(1)$ et $y(0) = y(1)$,
\item pour toutes les autres valeurs de $t$ et $t'$, on n'a jamais simultanément $x(t) = x(t')$ et $y(t) = y(t')$.
\item elles sont 1-périodiques, c'est-à-dire que $x(t+1) = x(t)$ et $y(t+1) = y(t)$ pour tout $t$ réel,
\item pour toutes valeurs de $t$ et $t'$, tel que on a simultanément $x(t) = x(t')$ et $y(t) = y(t')$, alors la différence $t-t'$ est entière.
\end{itemize}
Perrine trace dans le plan l'ensemble $\Gamma$ des points de coordonnées $\left(x(t),y(t)\right)$, appelé \textbf{contour}, et cherche à savoir si la partie du plan que cela délimite (que l'on suppose bien définie) est un $r$-cookie.
Perrine trace dans le plan l'ensemble $\Gamma$ des points de coordonnées $\left(x(t),y(t)\right)$, appelé \textbf{contour}. Elle cherche maintenant à savoir si la partie du plan que le contour délimite (que l'on suppose bien définie) est un~$r$-cookie.
\q Existe-t-il un contour pour lequel $x$ et $y$ sont continues, mais pour lequel la partie délimitée n'est pas un $r$-cookie ? Si oui, est-ce possible avec $x$ et $y$ dérivables ? Deux fois dérivables ? Trois fois dérivables ?
\q Existe-t-il un contour pour lequel $x$ et $y$ sont continues, mais pour lequel la partie délimitée n'est pas un~$r$-cookie ? Si oui, est-ce possible avec $x$ et $y$ dérivables ? Deux fois dérivables ? Trois fois dérivables ?
\q Existe-t-il un contour pour lequel $x$ et $y$ sont continues, qui soit un cookie, mais qui ne soit un $r$-cookie pour aucun $r>0$ ? Si oui, est-ce possible avec $x$ et $y$ dérivables ? Deux fois dérivables ? Trois fois dérivables ?
\q Existe-t-il un contour pour lequel $x$ et $y$ sont continues, qui soit un cookie, mais qui ne soit un~$r$-cookie pour aucun $r>0$ ? Si oui, est-ce possible avec $x$ et $y$ dérivables ? Deux fois dérivables ? Trois fois dérivables ?
%Existe-t-il des formes donc le contour est continu (je regarde l'intérieur d'un lacet simple continu) qui ne peuvent pas être obtenue avec un nombre fini de brioche ?